Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Clin Invest ; 132(23)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2138390

Subject(s)
COVID-19 , Humans
2.
Sci Rep ; 12(1): 12269, 2022 07 18.
Article in English | MEDLINE | ID: covidwho-1937442

ABSTRACT

Serological testing for SARS-CoV-2 IgG antibodies is used to assess their presence in blood samples from exposed individuals and provides a measure of the magnitude of immune response to infection. The measurement of neutralizing antibodies (NAbs) in particular provides information about the severity of prior infection and level of protective immunity against re-infection. Much of the work investigating the association between prior infection severity and NAb levels has been conducted among clinical populations, and less is known about this relationship in the general population. Accordingly, we utilize data from a large (n = 790) community-based cohort of unvaccinated, seropositive participants. We analyzed the association between NAb response, measured via surrogate virus neutralization assay, with patterns of symptoms and household exposure. Our results indicate no detectable NAb activity in 63.8% of the seropositive participants (n = 504). Those with detectable NAb levels demonstrated a positive relationship between NAb activity and both self-reported previous symptom severity and household exposure. These findings are significant in light of recent concerns about degree of protective immunity conferred by prior infection or vaccination, and we highlight the value of community-based research for investigating variation in immune response.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Family Characteristics , Humans , SARS-CoV-2
3.
Open Forum Infect Dis ; 9(3): ofac055, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1795135

ABSTRACT

BACKGROUND: Confidence in natural immunity after infection with severe acute respiratory syndrome coronavirus 2 is one reason for vaccine hesitancy. METHODS: We measured antibody-mediated neutralization of spike protein-ACE2 receptor binding in a large community-based sample of seropositive individuals who differed in severity of infection (N = 790). RESULTS: A total of 39.8% of infections were asymptomatic, 46.5% were symptomatic with no clinical care, 13.8% were symptomatic with clinical care, and 3.7% required hospitalization. Moderate/high neutralizing activity was present after 41.3% of clinically managed infections, in comparison with 7.9% of symptomatic and 1.9% of asymptomatic infections. CONCLUSIONS: Prior coronavirus disease 2019 infection does not guarantee a high level of antibody-mediated protection against reinfection in the general population.

4.
Open Forum Infect Dis ; 9(3): ofac027, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1701028

ABSTRACT

BACKGROUND: While several demographic and clinical correlates of coronavirus disease 2019 (COVID-19) outcome have been identified, their relationship to virological and immunological parameters remains poorly defined. METHODS: To address this, we performed longitudinal collection of nasopharyngeal swabs and blood samples from a cohort of 58 hospitalized adults with COVID-19. Samples were assessed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load, viral genotype, viral diversity, and antibody titer. Demographic and clinical information, including patient blood tests and several composite measures of disease severity, was extracted from electronic health records. RESULTS: Several factors, including male sex, higher age, higher body mass index, higher 4C Mortality score, and elevated lactate dehydrogenase levels, were associated with intensive care unit admission. Of all measured parameters, only the retrospectively calculated median Deterioration Index score was significantly associated with death. While quantitative polymerase chain reaction cycle threshold (Ct) values and genotype of SARS-CoV-2 were not significantly associated with outcome, Ct value did correlate positively with C-reactive protein levels and negatively with D-dimer, lymphocyte count, and antibody titer. Intrahost viral genetic diversity remained constant through the disease course and resulted in changes in viral genotype in some participants. CONCLUSIONS: Ultimately, these results suggest that worse outcomes are driven by immune dysfunction rather than by viral load and that SARS-CoV-2 evolution in hospital settings is relatively constant over time.

5.
Circulation ; 144(23): e461-e471, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1666518

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has had worldwide repercussions for health care and research. In spring 2020, most non-COVID-19 research was halted, hindering research across the spectrum from laboratory-based experimental science to clinical research. Through the second half of 2020 and the first half of 2021, biomedical research, including cardiovascular science, only gradually restarted, with many restrictions on onsite activities, limited clinical research participation, and the challenges associated with working from home and caregiver responsibilities. Compounding these impediments, much of the global biomedical research infrastructure was redirected toward vaccine testing and deployment. This redirection of supply chains, personnel, and equipment has additionally hampered restoration of normal research activity. Transition to virtual interactions offset some of these limitations but did not adequately replace the need for scientific exchange and collaboration. Here, we outline key steps to reinvigorate biomedical research, including a call for increased support from the National Institutes of Health. We also call on academic institutions, publishers, reviewers, and supervisors to consider the impact of COVID-19 when assessing productivity, recognizing that the pandemic did not affect all equally. We identify trainees and junior investigators, especially those with caregiving roles, as most at risk of being lost from the biomedical workforce and identify steps to reduce the loss of these key investigators. Although the global pandemic highlighted the power of biomedical science to define, treat, and protect against threats to human health, significant investment in the biomedical workforce is required to maintain and promote well-being.


Subject(s)
Biomedical Research/trends , COVID-19 , Cardiology/trends , Research Design/trends , Research Personnel/trends , Advisory Committees , American Heart Association , Biomedical Research/education , Cardiology/education , Diffusion of Innovation , Education, Professional/trends , Forecasting , Humans , Public Opinion , Research Personnel/education , Time Factors , United States
6.
Neuromuscul Disord ; 32(1): 33-35, 2022 01.
Article in English | MEDLINE | ID: covidwho-1521439

ABSTRACT

SARS-CoV-2 vaccines protect against symptomatic and severe COVID-19. The BNT162b2/Pfizer and mRNA-1273/Moderna vaccines represent new vaccine technology relying on administration of mRNA encoding SARS-CoV-2 viral spike protein encased in lipid nanoparticles. The vaccines are administered as two doses into muscle, which elicits a strong response, typically within 14 days after the second dose. Neuromuscular diseases are characterized by the progressive loss of muscle and are often treated with chronic glucocorticoid steroids, both of which may contribute to a blunted immune response to vaccination. Here, we measured IgG antibody content and neutralizing antibody response after mRNA COVID-19 vaccination in non-ambulatory neuromuscular disease patients. After two doses of mRNA COVID-19 vaccine, median anti-receptor binding domain IgG and percent surrogate viral neutralization in non-ambulatory neuromuscular disease samples were significantly elevated similar to healthy vaccinated controls. As in healthy controls, COVID-19 vaccines produce greater antibody levels compared to those with a history of outpatient COVID-19 infection. This data documents that non-ambulatory neuromuscular disease patients respond well to two doses of mRNA COVID-19 vaccine despite low muscle mass and even chronic steroid use.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Immunoglobulin G/biosynthesis , Neuromuscular Diseases/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , Antibody Formation , BNT162 Vaccine , Drug Interactions , Female , Humans , Male , Middle Aged , Neuromuscular Diseases/drug therapy , Neutralization Tests , Steroids/therapeutic use , Young Adult
7.
Ann Epidemiol ; 66: 44-51, 2022 02.
Article in English | MEDLINE | ID: covidwho-1487600

ABSTRACT

To date, COVID-19 case rates are disproportionately higher in Black and Latinx communities across the US, leading to more hospitalizations, and deaths in those communities. These differences in case rates are evident in comparisons of Chicago neighborhoods with differing race and/or ethnicities of their residents. Disparities could be due to neighborhoods with more adverse health outcomes associated with poverty and other social determinants of health experiencing higher prevalence of SARS-CoV-2 infection or due to greater morbidity and mortality resulting from equivalent SARS-CoV-2 infection prevalence. We surveyed five pairs of adjacent ZIP codes in Chicago with disparate COVID-19 case rates for highly specific and quantitative serologic evidence of any prior infection by SARS-CoV-2 to compare with their disparate COVID-19 case rates. Dried blood spot samples were self-collected at home by internet-recruited participants in summer 2020, shortly after Chicago's first wave of the COVID-19 pandemic. Pairs of neighboring ZIP codes with very different COVID-19 case rates had similar seropositivity rates for anti-SARS-CoV-2 receptor binding domain IgG antibodies. Overall, these findings of comparable exposure to SARS-CoV-2 across neighborhoods with very disparate COVID-19 case rates are consistent with social determinants of health, and the co-morbidities related to them, driving differences in COVID-19 rates across neighborhoods.


Subject(s)
COVID-19 , COVID-19/epidemiology , Chicago/epidemiology , Humans , Pandemics , Residence Characteristics , SARS-CoV-2
8.
EClinicalMedicine ; 38: 101018, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1397304

ABSTRACT

BACKGROUND: Recent reports have suggested that among individuals previously infected with SARS-CoV-2, a single mRNA vaccine dose is sufficient to elicit high levels of immunity. METHODS: We compared anti-SARS-CoV-2 spike receptor binding domain (RBD) IgG antibody concentrations and antibody-mediated neutralization of spike-angiotensin-converting enzyme (ACE2) receptor binding in vitro following vaccination of non-hospitalized participants by sero-status and acute virus diagnosis history. Participants were analysed before and after mRNA vaccination (BNT162b2/Pfizer or mRNA-1273/Moderna) in a community-based, home-collected, longitudinal serosurvey in the Chicago area (USA); none reported hospitalization for COVID-19. Samples were collected in January and February 2021. Before vaccination, some reported prior positive acute viral diagnostic testing and were seropositive (COVID-19+); the others who did not report acute viral diagnostic testing were categorized as seropositive or seronegative based on anti-spike RBD IgG test results. FINDINGS: Of 307 unique vaccine recipients, 46 reported a prior COVID-19 diagnosis and were seropositive (COVID-19 +). Of the 261 with no history of acute viral diagnostic testing, 117 were seropositive and 144 seronegative before vaccination. The median age was 38 years (range 21-83) with 67 female and 33% male; 40% were non-White. Responses were evaluated after one (n = 142) or two (n = 191) doses of BNT162b2 or mRNA-1273 vaccine. After one dose, median post-vaccine IgG concentration and percent surrogate neutralization were each significantly higher among the COVID-19+ (median 48·2 µg/ml, IgG; > 99.9% neutralization) compared to the seropositives (3·6 µg /ml IgG; 56.5% neutralization) and seronegatives (2·6 µg /ml IgG; 38·3% neutralization). The latter two groups reached > 95% neutralization after the second vaccine dose. INTERPRETATION: After one dose of mRNA vaccine, individuals previously diagnosed with COVID-19 responded with high levels of anti-RBD IgG and surrogate neutralization of spike-ACE2 interaction. One dose of mRNA vaccine was not sufficient to generate comparably high responses among most persons previously infected with SARS-CoV-2 without a clinical COVID-19 diagnosis, nor among seronegative persons. FUNDING: National Science Foundation 2035114, NIH 3UL1TR001422-06S4, and Northwestern University Office of Research.

9.
J Infect Dis ; 224(5): 793-797, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1393272

ABSTRACT

We investigated whether the antibody response to coronavirus disease 2019 (COVID-19) mRNA vaccination is similar in women and men. In a community cohort without prior COVID-19, first vaccine dose produced higher immunoglobulin G (IgG) levels and percent inhibition of spike-ACE2 receptor binding, a surrogate measure of virus neutralization, in women compared to men (7.0 µg/mL, 51.6% vs 3.3 µg/mL, 36.4%). After 2 doses, IgG levels remained significantly higher for women (30.4 µg/mL) compared to men (20.6 µg/mL), while percent inhibition was similar (98.4% vs 97.7%). Sex-specific antibody response to mRNA vaccination informs future efforts to understand vaccine protection and side effects.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Vaccines, Synthetic/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Female , Humans , Immunologic Tests/methods , Male , Middle Aged , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
10.
Sci Rep ; 11(1): 17325, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1379337

ABSTRACT

Two-dose messenger RNA vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective in preventing symptomatic COVID-19 infection. However, the durability of protection is not known, nor is the effectiveness against emerging viral variants. Additionally, vaccine responses may differ based on prior SARS-CoV-2 exposure history. To investigate protection against SARS-CoV-2 variants we measured binding and neutralizing antibody responses following both vaccine doses. We document significant declines in antibody levels three months post-vaccination, and reduced neutralization of emerging variants, highlighting the need to identify correlates of clinical protection to inform the timing of and indications for booster vaccination.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/analysis , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Adult , Antibodies, Neutralizing/metabolism , Antibodies, Viral/analysis , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/metabolism , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Humans , Immunoglobulin G/analysis , Immunoglobulin G/metabolism , Male , Middle Aged , Spike Glycoprotein, Coronavirus/metabolism , Time Factors , Vaccination , Vaccines, Synthetic/immunology , Young Adult
11.
Sci Rep ; 11(1): 15321, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1331394

ABSTRACT

The spike protein of SARS-CoV-2 engages the human angiotensin-converting enzyme 2 (ACE2) receptor to enter host cells, and neutralizing antibodies are effective at blocking this interaction to prevent infection. Widespread application of this important marker of protective immunity is limited by logistical and technical challenges associated with live virus methods and venous blood collection. To address this gap, we validated an immunoassay-based method for quantifying neutralization of the spike-ACE2 interaction in a single drop of capillary whole blood, collected on filter paper as a dried blood spot (DBS) sample. Samples are eluted overnight and incubated in the presence of spike antigen and ACE2 in a 96-well solid phase plate. Competitive immunoassay with electrochemiluminescent label is used to quantify neutralizing activity. The following measures of assay performance were evaluated: dilution series of confirmed positive and negative samples, agreement with results from matched DBS-serum samples, analysis of results from DBS samples with known COVID-19 status, and precision (intra-assay percent coefficient of variation; %CV) and reliability (inter-assay; %CV). Dilution series produced the expected pattern of dose-response. Agreement between results from serum and DBS samples was high, with concordance correlation = 0.991. Analysis of three control samples across the measurement range indicated acceptable levels of precision and reliability. Median % surrogate neutralization was 46.9 for PCR confirmed convalescent COVID-19 samples and 0.1 for negative samples. Large-scale testing is important for quantifying neutralizing antibodies that can provide protection against COVID-19 in order to estimate the level of immunity in the general population. DBS provides a minimally-invasive, low cost alternative to venous blood collection, and this scalable immunoassay-based method for quantifying inhibition of the spike-ACE2 interaction can be used as a surrogate for virus-based assays to expand testing across a wide range of settings and populations.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/immunology , Dried Blood Spot Testing/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Blocking , Antibodies, Viral/immunology , COVID-19/blood , Humans , Immunoassay/methods , Neutralization Tests/methods , Reproducibility of Results , Serologic Tests
12.
Open Forum Infect Dis ; 8(7): ofab244, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1328933

ABSTRACT

In a community-based sample of seropositive adults (n = 1101), we found that seropositive individuals who lived with a known coronavirus disease 2019 (COVID-19) case exhibited higher blood anti-severe acute respiratory syndrome coronavirus 2 spike receptor-binding domain immunoglobulin G concentrations and greater symptom severity compared to seropositive individuals who did not live with a known COVID-19 case.

13.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: covidwho-1147004

ABSTRACT

BACKGROUNDEstimates of seroprevalence to SARS-CoV-2 vary widely and may influence vaccination response. We ascertained IgG levels across a single US metropolitan site, Chicago, from June 2020 through December 2020.METHODSParticipants (n = 7935) were recruited through electronic advertising and received materials for a self-sampled dried-blood spot assay through the mail or a minimal contact in-person method. IgG against the receptor-binding domain of SARS-CoV-2 was measured using an established highly sensitive and highly specific assay.RESULTSOverall seroprevalence was 17.9%, with no significant difference between method of contact. Only 2.5% of participants reported having had a diagnosis of COVID-19 based on virus detection, consistent with a 7-fold greater exposure to SARS-CoV-2 measured by serology than that detected by viral testing. The range of IgG level observed in seropositive participants from this community survey overlapped with the range of IgG levels associated with COVID-19 cases having a documented positive PCR test. From a subset of those who participated in repeat testing, half of seropositive individuals retained detectable antibodies for 3 to 4 months.CONCLUSIONQuantitative IgG measurements with a highly specific and sensitive assay indicated more widespread exposure to SARS-CoV-2 than observed by viral testing. The range of IgG concentrations produced from these asymptomatic exposures was similar to IgG levels occurring after documented nonhospitalized COVID-19, which were considerably lower than those produced from hospitalized COVID-19 cases. The differing ranges of IgG response, coupled with the rate of decay of antibodies, may influence response to subsequent viral exposure and vaccine.FundingNational Science Foundation grant 2035114, NIH grant 3UL1TR001422-06S4, NIH National Center for Advancing Translational Sciences grants UL1 TR001422 and UL1 TR002389, Dixon Family Foundation, Northwestern University Cancer Center (NIH grant P30 CA060553), and Walder Foundation's Chicago Coronavirus Assessment Network.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/epidemiology , Pandemics , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/statistics & numerical data , Chicago/epidemiology , Cohort Studies , Dried Blood Spot Testing/methods , Dried Blood Spot Testing/statistics & numerical data , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Sensitivity and Specificity , Seroepidemiologic Studies , Young Adult
14.
PLoS One ; 15(8): e0237833, 2020.
Article in English | MEDLINE | ID: covidwho-717610

ABSTRACT

OBJECTIVE: Serological testing is needed to investigate the extent of transmission of SARS-CoV-2 from front-line essential workers to their household members. However, the requirement for serum/plasma limits serological testing to clinical settings where it is feasible to collect and process venous blood. To address this problem we developed a serological test for SARS-CoV-2 IgG antibodies that requires only a single drop of finger stick capillary whole blood, collected in the home and dried on filter paper (dried blood spot, DBS). We describe assay performance and demonstrate its utility for remote sampling with results from a community-based study. METHODS: An ELISA to the receptor binding domain of the SARS-CoV-2 spike protein was optimized to quantify IgG antibodies in DBS. Samples were self-collected from a community sample of 232 participants enriched with health care workers, including 30 known COVID-19 cases and their household members. RESULTS: Among 30 individuals sharing a household with a virus-confirmed case of COVID-19, 80% were seropositive. Of 202 community individuals without prior confirmed acute COVID-19 diagnoses, 36% were seropositive. Of documented convalescent COVID-19 cases from the community, 29 of 30 (97%) were seropositive for IgG antibodies to the receptor binding domain. CONCLUSION: DBS ELISA provides a minimally-invasive alternative to venous blood collection. Early analysis suggests a high rate of transmission among household members. High rates of seroconversion were also noted following recovery from infection. Serological testing for SARS-CoV-2 IgG antibodies in DBS samples can facilitate seroprevalence assessment in community settings to address epidemiological questions, monitor duration of antibody responses, and assess if antibodies against the spike protein correlate with protection from reinfection.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Dried Blood Spot Testing , Family Characteristics , Health Personnel , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Serologic Tests/methods , Adolescent , Adult , Aged , Antibodies, Viral/blood , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL